On the Time Splitting Spectral Method for the Complex Ginzburg-Landau Equation in the Large Time and Space Scale Limit
نویسندگان
چکیده
We are interested in the numerical approximation of the complex Ginzburg–Landau equation in the large time and space limit. There are two interesting regimes in this problem, one being the large space time limit, and one being the nonlinear Schrodinger limit. These limits have been studied analytically in, for example, [7, 18, 19]. We study a time splitting spectral method for this problem. In particular, we are interested in whether such a scheme is asymptotic preserving (AP) with respect to these two limits. Our results show that the scheme is AP for the first limit, but not the second one. For the large space time limit, our numerical experiments show that the scheme can capture the correct physical behavior without resolving the small scale dynamics, even for transitional problem where small and large scales coexist.
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملExact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملApplication of high-order spectral method for the time fractional mobile/immobile equation
In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملOn the Relation Between the Large-Scale Tropospheric Circulation and Air Quality in Tehran
The large-scale tropospheric circulation can play a controlling role in the accumulation and ventilation of air pollutants. It thus impacts air quality in large urban areas. This paper investigates the statistical relations between the dynamical indices related to circulation in the troposphere and visibility as a surrogate for air pollution in the urban area of Tehran for the climatological pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 30 شماره
صفحات -
تاریخ انتشار 2008